
CS 188: Artificial Intelligence
Spring 2007

Lecture 7: CSP-II and Adversarial
Search

2/6/2007

Srini Narayanan – ICSI and UC Berkeley

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Summary: Consistency
§ Basic solution: DFS / backtracking
§ Add a new assignment
§ Check for violations

§ Forward checking:
§ Pre-filter unassigned domains after

every assignment
§ Only remove values which conflict with

current assignments

§ Arc consistency
§ We only defined it for binary CSPs
§ Check for impossible values on all pairs

of variables, prune them
§ Run (or not) after each assignment

before recursing
§ A pre-filter, not search!

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Limitations of Arc Consistency

§ After running arc
consistency:
§ Can have one solution

left
§ Can have multiple

solutions left
§ Can have no solutions

left (and not know it)

What went
wrong here?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

K-Consistency
§ Increasing degrees of consistency
§ 1-Consistency (Node Consistency):

Each single node’s domain has a value
which meets that node’s unary
constraints

§ 2-Consistency (Arc Consistency): For
each pair of nodes, any consistent
assignment to one can be extended to
the other

§ K-Consistency: For each k nodes, any
consistent assignment to k-1 can be
extended to the kth node.

§ Higher k more expensive to compute

§ (You need to know the k=2 algorithm)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Strong K-Consistency
§ Strong k-consistency: also k-1, k-2, … 1 consistent
§ Claim: strong n-consistency means we can solve without

backtracking!
§ Why?
§ Choose any assignment to any variable
§ Choose a new variable
§ By 2-consistency, there is a choice consistent with the first
§ Choose a new variable
§ By 3-consistency, there is a choice consistent with the first 2
§ …

§ Lots of middle ground between arc consistency and n-
consistency! (e.g. path consistency)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

K-consistent vs. strong k-consistent

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Iterative Algorithms for CSPs
§ Greedy and local methods typically work with “complete”

states, i.e., all variables assigned

§ To apply to CSPs:
§ Allow states with unsatisfied constraints
§ Operators reassign variable values

§ Variable selection: randomly select any conflicted
variable

§ Value selection by min-conflicts heuristic:
§ Choose value that violates the fewest constraints
§ I.e., hill climb with h(n) = total number of violated constraints

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: h(n) = number of attacks

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Performance of Min-Conflicts
§ Given random initial state, can solve n-queens in almost constant

time for arbitrary n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Example: Boolean Satisfiability

§ Given a Boolean expression, is it satisfiable?
§ Very basic problem in computer science

§ Turns out you can always express in 3-CNF

§ 3-SAT: find a satisfying truth assignment

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Example: 3-SAT

§ Variables:
§ Domains:
§ Constraints:

Implicitly
conjoined
(all clauses
must be
satisfied)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

CSPs: Queries

§ Types of queries:
§ Legal assignment
§ All assignments
§ Possible values of some

query variable(s) given
some evidence (partial
assignments)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Problem Structure
§ Tasmania and mainland are

independent subproblems

§ Identifiable as connected
components of constraint graph

§ Suppose each subproblem has c
variables out of n total
§ Worst-case solution cost is

O((n/c)(dc)), linear in n
§ E.g., n = 80, d = 2, c =20
§ 280 = 4 billion years at 10 million

nodes/sec
§ (4)(220) = 0.4 seconds at 10 million

nodes/sec

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Tree-Structured CSPs

§ Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time
§ Compare to general CSPs, where worst-case time is O(dn)

§ This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and
the complexity of reasoning.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Tree-Structured CSPs
§ Choose a variable as root, order

variables from root to leaves such
that every node’s parent precedes
it in the ordering

§ For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ For i = 1 : n, assign Xi consistently with Parent(Xi)

§ Runtime: O(n d2) (why?)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Tree-Structured CSPs
§ Why does this work?
§ Claim: After each node is processed leftward, all nodes

to the right can be assigned in any way consistent with
their parent.

§ Proof: Induction on position

§ Why doesn’t this algorithm work with loops?

§ Note: we’ll see this basic idea again with Bayes’ nets
and call it belief propagation

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Nearly Tree-Structured CSPs

§ Conditioning: instantiate a variable, prune its neighbors' domains

§ Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

§ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

CSP Summary
§ CSPs are a special kind of search problem:
§ States defined by values of a fixed set of variables
§ Goal test defined by constraints on variable values

§ Backtracking = depth-first search with one legal variable assigned
per node

§ Variable ordering and value selection heuristics help significantly

§ Forward checking prevents assignments that guarantee later failure

§ Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

§ The constraint graph representation allows analysis of problem
structure

§ Tree-structured CSPs can be solved in linear time

§ Iterative min-conflicts is usually effective in practice

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Games: Motivation

§ Games are a form of multi-agent environment
§ What do other agents do and how do they affect our success?
§ Cooperative vs. competitive multi-agent environments.
§ Competitive multi-agent environments give rise to adversarial

search a.k.a. games

§ Why study games?
§ Games are fun!
§ Historical role in AI
§ Studying games teaches us how to deal with other agents trying

to foil our plans
§ Huge state spaces – Games are hard!
§ Nice, clean environment with clear criteria for success

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Game Playing

§ Axes:
§ Deterministic or stochastic?
§ One, two or more players?
§ Perfect information (can you see the state)?

§ Want algorithms for calculating a strategy
(policy) which recommends a move in
each state

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Deterministic Single-Player?
§ Deterministic, single player,

perfect information:
§ Know the rules
§ Know what actions do
§ Know when you win
§ E.g. Freecell, 8-Puzzle, Rubik’s

cube
§ … it’s just search!
§ Slight reinterpretation:
§ Each node stores the best

outcome it can reach
§ This is the maximal outcome of

its children
§ Note that we don’t store path

sums as before
§ After search, can pick move that

leads to best node win loselose

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Deterministic Two-Player

§ E.g. tic-tac-toe, chess,
checkers

§ Minimax search
§ A state-space search tree
§ Players alternate
§ Each layer, or ply, consists of a

round of moves
§ Choose move to position with

highest minimax value = best
achievable utility against best
play

§ Zero-sum games
§ One player maximizes result
§ The other minimizes result

8 2 5 6

max

min

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Tic-tac-toe Game Tree

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Minimax Example

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Minimax Search

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Minimax Properties
§ Optimal against a perfect player. Otherwise?

§ Time complexity?
§ O(bm)

§ Space complexity?
§ O(bm)

§ For chess, b ≈ 35, m ≈ 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole tree?

10 10 9 100

max

min

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Resource Limits
§ Cannot search to leaves

§ Limited search
§ Instead, search a limited depth of the

tree
§ Replace terminal utilities with an eval

function for non-terminal positions

§ Guarantee of optimal play is gone

§ More plies makes a BIG difference

§ Example:
§ Suppose we have 100 seconds, can

explore 10K nodes / sec
§ So can check 1M nodes per move
§ α-β reaches about depth 8 – decent

chess program ? ? ? ?

-1 -2 4 9

4

min min

max

-2 4

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Evaluation Functions
§ Function which scores non-terminals

§ Ideal function: returns the utility of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of
length 2)

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

….and so on.

This works for single-agent search as well!

Why do we want to do this for multiplayer games?

…
b

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Alpha-Beta Pruning
§ A way to improve the performance of the Minimax Procedure
§ Basic idea: “If you have an idea which is surely bad, don’t take the

time to see how truly awful it is” ~ Pat Winston

2 7 1

=2

>=2

<=1

?

• We don’t need to compute
the value at this node.

• No matter what it is it can’t
effect the value of the root
node.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

α-β Pruning Example

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Pruning in Minimax Search

[-∞,+∞]

3 12 8 2 14 5 2

[-∞,3] [-∞,2] [-∞,14][3,3] [-∞,5][2,2]

[3,+∞][3,14][3,5][3,3]

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

α-β Pruning

§ General configuration
§ α is the best value the

Player can get at any
choice point along the
current path
§ If n is worse than α, MAX

will avoid it, so prune n’s
branch
§ Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

α-β Pruning Pseudocode

β

v

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

α-β Pruning Properties
§ Pruning has no effect on final result

§ Good move ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth
§ Full search of, e.g. chess, is still hopeless!

§ A simple example of metareasoning, here reasoning
about which computations are relevant

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Non-Zero-Sum Games

§ Similar to
minimax:
§ Utilities are

now tuples
§ Each player

maximizes
their own entry
at each node

§ Propagate (or
back up) nodes
from children

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Stochastic Single-Player
§ What if we don’t know what the

result of an action will be? E.g.,
§ In solitaire, shuffle is unknown
§ In minesweeper, don’t know where

the mines are

§ Can do expectimax search
§ Chance nodes, like actions except

the environment controls the action
chosen

§ Calculate utility for each node
§ Max nodes as in search
§ Chance nodes take average

(expectation) of value of children

§ Later, we’ll learn how to formalize
this as a Markov Decision
Process

8 2 5 6

max

average

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Stochastic Two-Player
§ E.g. backgammon
§ Expectiminimax (!)
§ Environment is an

extra player that moves
after each agent
§ Chance nodes take

expectations, otherwise
like minimax

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Game Playing State-of-the-Art
§ Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total
of 443,748,401,247 positions.

§ Chess: Deep Blue defeated human world champion Gary Kasparov
in a six-game match in 1997. Deep Blue examined 200 million
positions per second, used very sophisticated evaluation and
undisclosed methods for extending some lines of search up to 40
ply.

§ Othello: human champions refuse to compete against computers,
which are too good.

§ Go: human champions refuse to compete against computers, which
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Stochastic Two-Player

§ Dice rolls increase b: 21 possible rolls
with 2 dice
§ Backgammon ≈ 20 legal moves
§ Depth 4 = 20 x (21 x 20)3 1.2 x 109

§ As depth increases, probability of
reaching a given node shrinks
§ So value of lookahead is diminished
§ So limiting depth is less damaging
§ But pruning is less possible…

§ TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

