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Summary: Consistency
§ Basic solution: DFS / backtracking
§ Add a new assignment
§ Check for violations

§ Forward checking:
§ Pre-filter unassigned domains after 

every assignment
§ Only remove values which conflict with 

current assignments

§ Arc consistency
§ We only defined it for binary CSPs
§ Check for impossible values on all pairs 

of variables, prune them
§ Run (or not) after each assignment 

before recursing
§ A pre-filter, not search!
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Limitations of Arc Consistency

§ After running arc 
consistency:
§ Can have one solution 

left
§ Can have multiple 

solutions left
§ Can have no solutions 

left (and not know it)

What went 
wrong here?
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K-Consistency
§ Increasing degrees of consistency
§ 1-Consistency (Node Consistency): 

Each single node’s domain has a value 
which meets that node’s unary 
constraints

§ 2-Consistency (Arc Consistency): For 
each pair of nodes, any consistent 
assignment to one can be extended to 
the other

§ K-Consistency: For each k nodes, any 
consistent assignment to k-1 can be 
extended to the kth node.

§ Higher k more expensive to compute

§ (You need to know the k=2 algorithm)
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Strong K-Consistency
§ Strong k-consistency: also k-1, k-2, … 1 consistent
§ Claim: strong n-consistency means we can solve without 

backtracking!
§ Why?
§ Choose any assignment to any variable
§ Choose a new variable
§ By 2-consistency, there is a choice consistent with the first
§ Choose a new variable
§ By 3-consistency, there is a choice consistent with the first 2
§ …

§ Lots of middle ground between arc consistency and n-
consistency!  (e.g. path consistency)
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K-consistent vs. strong k-consistent
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Iterative Algorithms for CSPs
§ Greedy and local methods typically work with “complete”

states, i.e., all variables assigned

§ To apply to CSPs:
§ Allow states with unsatisfied constraints
§ Operators reassign variable values

§ Variable selection: randomly select any conflicted 
variable

§ Value selection by min-conflicts heuristic:
§ Choose value that violates the fewest constraints
§ I.e., hill climb with h(n) = total number of violated constraints
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Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: h(n) = number of attacks
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Performance of Min-Conflicts
§ Given random initial state, can solve n-queens in almost constant 

time for arbitrary n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP 
except in a narrow range of the ratio
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Example: Boolean Satisfiability

§ Given a Boolean expression, is it satisfiable?
§ Very basic problem in computer science

§ Turns out you can always express in 3-CNF

§ 3-SAT: find a satisfying truth assignment
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Example: 3-SAT

§ Variables:
§ Domains:
§ Constraints:

Implicitly 
conjoined 
(all clauses 
must be 
satisfied)
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CSPs: Queries

§ Types of queries:
§ Legal assignment 
§ All assignments
§ Possible values of some 

query variable(s) given 
some evidence (partial 
assignments)
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Problem Structure
§ Tasmania and mainland are 

independent subproblems

§ Identifiable as connected 
components of constraint graph

§ Suppose each subproblem has c 
variables out of n total
§ Worst-case solution cost is 

O((n/c)(dc)), linear in n
§ E.g., n = 80, d = 2, c =20
§ 280 = 4 billion years at 10 million 

nodes/sec
§ (4)(220) = 0.4 seconds at 10 million 

nodes/sec
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Tree-Structured CSPs

§ Theorem: if the constraint graph has no loops, the CSP can be 
solved in O(n d2) time
§ Compare to general CSPs, where worst-case time is O(dn)

§ This property also applies to logical and probabilistic reasoning: an 
important example of the relation between syntactic restrictions and 
the complexity of reasoning.
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Tree-Structured CSPs
§ Choose a variable as root, order

variables from root to leaves such
that every node’s parent precedes
it in the ordering 

§ For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ For i = 1 : n, assign Xi consistently with Parent(Xi)

§ Runtime: O(n d2)  (why?)
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Tree-Structured CSPs
§ Why does this work?
§ Claim: After each node is processed leftward, all nodes 

to the right can be assigned in any way consistent with 
their parent.

§ Proof: Induction on position

§ Why doesn’t this algorithm work with loops?

§ Note: we’ll see this basic idea again with Bayes’ nets 
and call it belief propagation
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Nearly Tree-Structured CSPs

§ Conditioning: instantiate a variable, prune its neighbors' domains

§ Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

§ Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c
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CSP Summary
§ CSPs are a special kind of search problem:
§ States defined by values of a fixed set of variables
§ Goal test defined by constraints on variable values

§ Backtracking = depth-first search with one legal variable assigned 
per node

§ Variable ordering and value selection heuristics help significantly

§ Forward checking prevents assignments that guarantee later failure

§ Constraint propagation (e.g., arc consistency) does additional work 
to constrain values and detect inconsistencies

§ The constraint graph representation allows analysis of problem 
structure

§ Tree-structured CSPs can be solved in linear time

§ Iterative min-conflicts is usually effective in practice
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Games: Motivation

§ Games are a form of multi-agent environment
§ What do other agents do and how do they affect our success?
§ Cooperative vs. competitive multi-agent environments.
§ Competitive multi-agent environments give rise to adversarial 

search a.k.a. games

§ Why study games?
§ Games are fun!
§ Historical role in AI
§ Studying games teaches us how to deal with other agents trying 

to foil our plans
§ Huge state spaces – Games are hard!
§ Nice, clean environment with clear criteria for success
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Game Playing

§ Axes:
§ Deterministic or stochastic?
§ One, two or more players?
§ Perfect information (can you see the state)?

§ Want algorithms for calculating a strategy 
(policy) which recommends a move in 
each state
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Deterministic Single-Player?
§ Deterministic, single player, 

perfect information:
§ Know the rules
§ Know what actions do
§ Know when you win
§ E.g. Freecell, 8-Puzzle, Rubik’s 

cube
§ … it’s just search!
§ Slight reinterpretation:
§ Each node stores the best 

outcome it can reach
§ This is the maximal outcome of 

its children
§ Note that we don’t store path 

sums as before
§ After search, can pick move that 

leads to best node win loselose
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Deterministic Two-Player

§ E.g. tic-tac-toe, chess, 
checkers

§ Minimax search
§ A state-space search tree
§ Players alternate
§ Each layer, or ply, consists of a 

round of moves
§ Choose move to position with 

highest minimax value = best 
achievable utility against best 
play

§ Zero-sum games
§ One player maximizes result
§ The other minimizes result

8 2 5 6

max

min
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Tic-tac-toe Game Tree
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Minimax Example
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Minimax Search
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Minimax Properties
§ Optimal against a perfect player.  Otherwise?

§ Time complexity?
§ O(bm)

§ Space complexity?
§ O(bm)

§ For chess, b ≈ 35, m ≈ 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole tree?

10 10 9 100

max

min
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Resource Limits
§ Cannot search to leaves

§ Limited search
§ Instead, search a limited depth of the 

tree
§ Replace terminal utilities with an eval

function for non-terminal positions

§ Guarantee of optimal play is gone

§ More plies makes a BIG difference

§ Example:
§ Suppose we have 100 seconds, can 

explore 10K nodes / sec
§ So can check 1M nodes per move
§ α-β reaches about depth 8 – decent 

chess program ? ? ? ?

-1 -2 4 9

4

min min

max

-2 4
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Evaluation Functions
§ Function which scores non-terminals

§ Ideal function: returns the utility of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length 1 or less.  (DFS gives up on any path of 
length 2)

2. If “1” failed, do a DFS which only searches paths 
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths 
of length 3 or less.

….and so on.

This works for single-agent search as well!

Why do we want to do this for multiplayer games?

…
b
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Alpha-Beta Pruning
§ A way to improve the performance of the Minimax Procedure
§ Basic idea: “If you have an idea which is surely bad, don’t take the 

time to see how truly awful it is” ~ Pat Winston

2 7 1

=2

>=2

<=1

?

• We don’t need to compute 
the value at this node.

• No matter what it is it can’t 
effect the value of the root 
node.
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α-β Pruning Example
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Pruning in Minimax Search

[-∞,+∞]

3 12 8 2 14 5 2

[-∞,3] [-∞,2] [-∞,14][3,3] [-∞,5][2,2]

[3,+∞][3,14][3,5][3,3]
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α-β Pruning

§ General configuration
§ α is the best value the 

Player can get at any 
choice point along the 
current path
§ If n is worse than α, MAX 

will avoid it, so prune n’s
branch
§ Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n
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α-β Pruning Pseudocode

β

v
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α-β Pruning Properties
§ Pruning has no effect on final result

§ Good move ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth
§ Full search of, e.g. chess, is still hopeless!

§ A simple example of metareasoning, here reasoning 
about which computations are relevant
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Non-Zero-Sum Games

§ Similar to 
minimax:
§ Utilities are 

now tuples
§ Each player 

maximizes 
their own entry 
at each node

§ Propagate (or 
back up) nodes 
from children

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5
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Stochastic Single-Player
§ What if we don’t know what the 

result of an action will be? E.g.,
§ In solitaire, shuffle is unknown
§ In minesweeper, don’t know where 

the mines are

§ Can do expectimax search
§ Chance nodes, like actions except 

the environment controls the action 
chosen

§ Calculate utility for each node
§ Max nodes as in search
§ Chance nodes take average 

(expectation) of value of children

§ Later, we’ll learn how to formalize 
this as a Markov Decision 
Process

8 2 5 6

max

average

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


Stochastic Two-Player
§ E.g. backgammon
§ Expectiminimax (!)
§ Environment is an 

extra player that moves 
after each agent
§ Chance nodes take 

expectations, otherwise 
like minimax

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


Game Playing State-of-the-Art
§ Checkers: Chinook ended 40-year-reign of human world champion 

Marion Tinsley in 1994. Used an endgame database defining perfect 
play for all positions involving 8 or fewer pieces on the board, a total 
of 443,748,401,247 positions.

§ Chess: Deep Blue defeated human world champion Gary Kasparov 
in a six-game match in 1997. Deep Blue examined 200 million 
positions per second, used very sophisticated evaluation and 
undisclosed methods for extending some lines of search up to 40 
ply.

§ Othello: human champions refuse to compete against computers, 
which are too good.

§ Go: human champions refuse to compete against computers, which 
are too bad. In go, b > 300, so most programs use pattern 
knowledge bases to suggest plausible moves.
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Stochastic Two-Player

§ Dice rolls increase b: 21 possible rolls 
with 2 dice
§ Backgammon ≈ 20 legal moves
§ Depth 4 = 20 x (21 x 20)3 1.2 x 109

§ As depth increases, probability of 
reaching a given node shrinks
§ So value of lookahead is diminished
§ So limiting depth is less damaging
§ But pruning is less possible…

§ TDGammon uses depth-2 search + 
very good eval function + 
reinforcement learning: world-
champion level play
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